

Initial Study on Students' Success in a First Programming Course

Ana Meštrović, Sanda Martinčić-Ipšić amestrovic, smarti@inf.uniri.hr

Outline

- Introduction and motivation
- Experiment Data Acquisition
 - Questionnaire
 - Cognitive test
- Results
- Concluding remarks

Introduction

- Programming is a standard course in any IT curriculum
 - students perception: important and challenging course
 - important prior knowledge for coursers that follow (Software Engineering)
- The goal: to find predictors for success in programming course
- Recent studies: there are no firm predictors (gender, age, high school results, motivation,...) for success in learning programming
 - related work (in UK, Danmark, Slovenia and Australia)
 - Middlesex University proposed a cognitive test (2006)

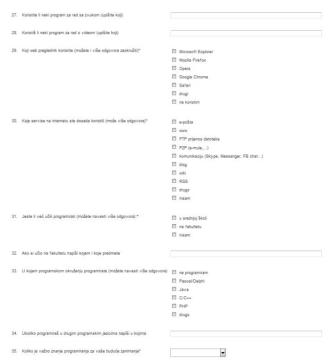
Programming course I

4 studying groups of double-major study of informatics								
ECTS L+ E								
Mathematics (4th semester)	5	2+2						
Physics (2 nd semester)	5	2+2						
Polytechnics (3 rd semester)	5	2+2						
Social sciences (1st semester)	4	2+1						

Challenge:

- different background knowledge,
- different motivation,
- heterogeneous studying groups

Programming course II


- Introduction to programming:
 - programming logic, algorithm design and development,
 - basic constructs of programming in C++ (variables, constants, expressions, control structures, functions, arrays,...)
- **Problems:**
 - Relatively low rate of students passing the exam
 - A few excellent students (need extra projects not to be bored)

Activity	Points	
Practise assignments (exrecises)	20	
1 st midterm exam – programming assignments	15	predicting the score
2 nd midterm exam – programming assignments	15	110 00010
1st midterm exam – theory test	10	
2 nd midterm exam – theory test	10	
Final exam	30	
	100	iineerina 5

Experiment – Data Acquisition

•In the first week of Programming course 69 students filled in:

general background experience **questionnaire** (40 questions), Moodle

cognitive test (12 questions), on paper

10. Pročitaj donji kod i označi pravilne odgovore u srednjem stupcu. int a = 5; int b = 3; int c = 7; b = a; c = b; a = c;	Novevrijednostiza a, bic su: \[\begin{array}{cccccccccccccccccccccccccccccccccccc	Pomoćni izračuni.
	□ a = 5 b = 7 c = 3 □ a = 7 b = 7 c = 7 Drugevrijednostiza a, b i c su: a = b = c = a = b = c = a = b = c = c = c = c = c = c = c = c = c	
11. Prečitaj donji kod i označi pravilne odgovore u srednjem stupcu. int a = 5; int b = 3; int c = 7; b = a; a = c; c = b;	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Druge vrijednostiza a, b i c su: a = b = c = a = b = c = a = b = c = c =	

69 Students (2011/12):

Double-major	Ger	nder	Average		
Informatics	\mathbf{M}	F	age	%	
with					
Social sciences	4	13	20	24.5%	
Polytechnics	11	6	21	24.5%	
Mathematics	2	17	22	28%	
Physics	6	10	21	22%	
Total	23	46			

Questionnaire structure

- Demographical questions (5)
 - Gender, Age, School Region, ...
- High school score (10)
 - Mathematics, Informatics,...
- Prior IT experience (15)
 - Text processors, Interent services,...
 - Programming, programming languages
- Current bachelor and planned master group (4)
- Motivation and expectation (6)

Cognitive test

- Dehnadi-Bornat test:
 - focused on the assignment statement
 - define and observe the mental models used when thinking about assignment statements and short sequences of assignments
- 12 questions are proposed:
 - each question gives a sample Java (C++) program
 - declaring two or three variables (with initial values)
 - assignment statements
 - student has to write the new values of variables

Anticipated mental models

7.5.1.1		n.a.
Model	Description	Effect
M1	right to left move	a←b ; b←0
M2	right to left copy	a←b
M3	left to right move	$a{ ightarrow}b$; $0{ ightarrow}a$
M4	left to right copy	a→b
M5	right to left move and add	a←a+b ; b←0
M6	right to left copy and add	a←a+b
M7	left to right move and add	$a+b \rightarrow b$; $0 \rightarrow a$
M8	left to right copy and add	a+b→b
M9	no change	
M10	equality	a=b
M11	swap	a⇔b

Anticipated mental models of a=b

Sample answer sheet

- S1. [sequence] The first assignment has its effect with initial values, then the second with the values produced by the first. (One effect is reported; the corresponding box is ticked.)
- S2. [simultaneous, multiple] Each assignment takes effect using the initial values of variables. (All effects are reported; the boxes corresponding to each effect are ticked.)
- S3. [simultaneous, single] Each assignment takes effect using the initial values of variables, but only the effects on the destination side are reported. (One overall effect is reported; the corresponding box is ticked.)

Question	Answers/s		Model/s
	a = 10	b = 0	M1+S1
	a = 20	b = 10	(M1+S3)/(M2+S3)/(M3+S3)/
5.			(M4+S3)
	a = 10	b = 10	M2+S1
int $a = 10;$	a = 0	b = 20	M3+S1
int $b = 20$;	a = 20	b = 20	M4+S1
	a = 40	b = 30	M5+S1
a = b;	a = 30	b = 30	(M5+S3)/(M6+S3)/(M7+S3)/
b = a;			(M8+S3)
	a = 30	b = 0	M6+S1
	a = 30	b = 50	M7+S1
	a = 0	b = 30	M8+S1
	a = 10	b = 20	(M9+S1)/(M11+S1)/
			(M11+S3)
	a = 20	b = 20	(M10+S1)/(M2+S2)/(M4+S2)
	a = 10	b = 10	
	a = 0	b = 10	(M1+S2)/M3+S2)
	a = 20	b = 0	
	a = 30	b = 20	(M5+S2)/(M7+S2)
	a = 10	b = 30	
	a = 0	b = 30	(M6+S2)/(M8+S2)
	a = 30	b = 0	
	a = 10	b = 20	(M11+S2)
	a = 10	b = 20	

Anticipated mental models of a=b and b=a

Levels of consitency

C0M2	consistent and correct (all answers in M2)
CO	min 8 answers in the same model (M1, M2, M3, M4, M5, M6, M7, M8, M9, M10 or M11)
C1	min 8 answers in the neighbour model (M1 and M2; M3 and M4;)
NOT	not consistent

 Hypothesis: students in higher consistency level would have better score in Programming course

Questionnaire Results I

- prior programming experience
 - YES 46%

NO 54%

- prior programming languages:
 - C/C++

33%

Pascal/Delphi

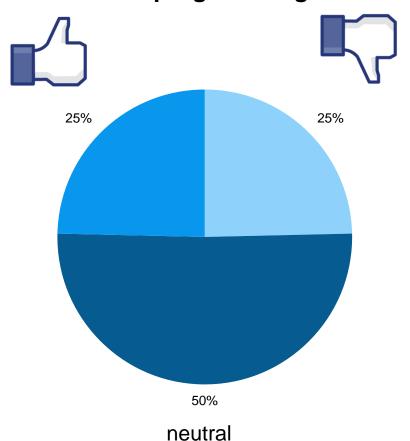
12%

Java

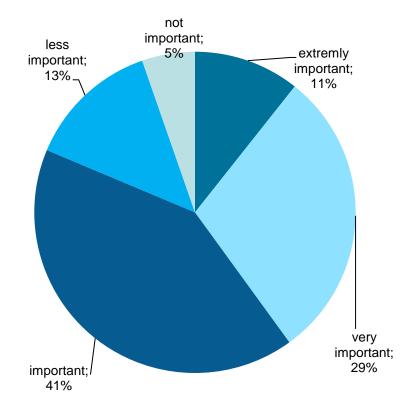
1%

PHP

0%

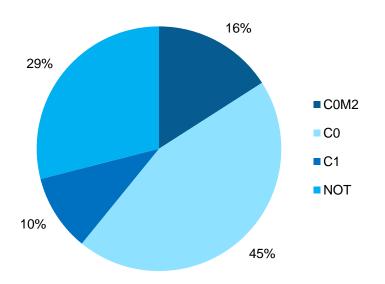

other(Logo, Ruby, ...)

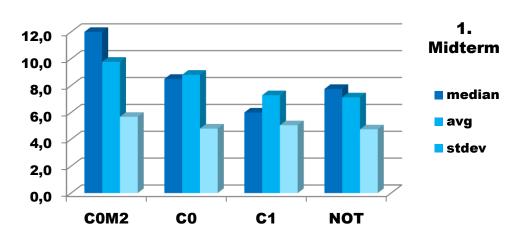
5%

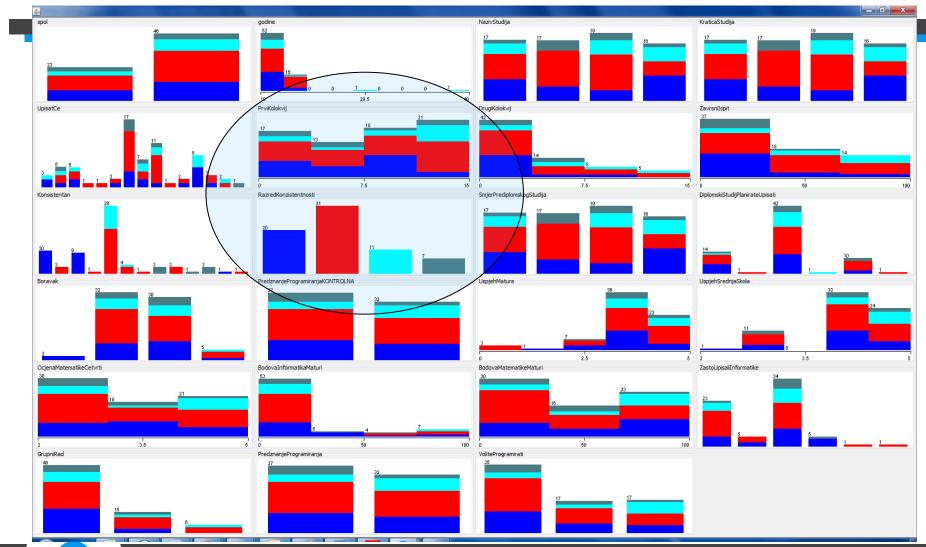


Questionnaire Results II

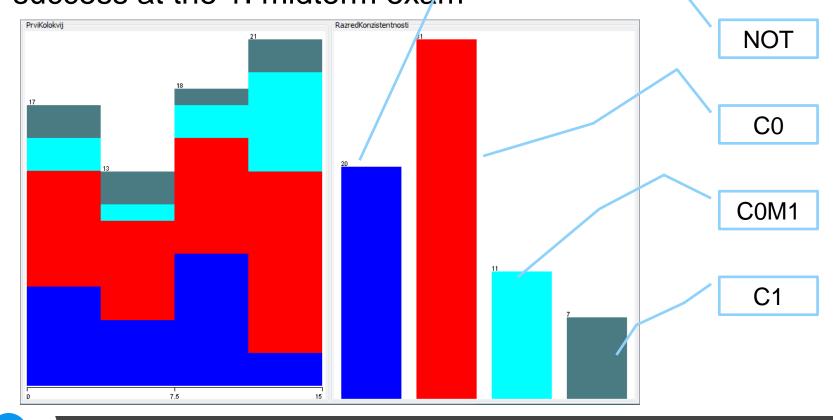
I like programming


Programming importance for future job




Experiment -Cognitive Test Results

- For each student the cognitive test was evaluated
- One out of original 11 cognitive models determined



Cognitive Model Independency?

Cognitive model vs. 1. midterm

 There is no correlation between consistency levels and success at the 1. midterm exam

Interpretation

- Possible problems:
 - Final exam results are not completed yet (the last final exams will be held in September)
 - Not enough data collected (only one year)
 - Some of the students have prior programming knowledge (46 %) and some of them repeat a course (13 %)
 - A certain number of students drop out the course
- Model evaluation using the complete final exam results



Initial DM Experiments

- collected data has a lot of quantitative values
 - –data mining WEKA experiment
 - grouping —> creating teaching groups (K-means)
 - classification tree -> predicting and gruping (C4.5)
- prediction -> exam PASS or FAIL (still waiting for the final results, Bologna)

Preliminary Clusters?

Concluding Remarks

- Purpose of presented research is to:
 - understand the reasons for students' failure
 - better understanding of background experience
 - find the most critical factors for predicting students' success
 - improve the quality of the Programming course

Future Work

- Repeat the experiment in 2012/2013.
- Build, test and verify new predictive models
- Expand test set:
 - SQ (Systemizing Quotient) test
 - EQ (Empathy Quotient) test
 - Self Rank test

— ...

Initial Study on Students' Success in a First Programming Course

Comments? Questions?

Ana Meštrović, Sanda Martinčić-Ipšić amestrovic, smarti@inf.uniri.hr

Bibliography

- Bornat, R., Dehnadi, S., & Simon. Mental models, consistency and programming aptitude. Proceedings 10th Australasian Computing Education Conference (ACE2008), pp. 53 - 62, 2008.
- Caspersen, M., Larsen, K., Bennedsen, J., Mental models and programming aptitude, In ITiCSE '07: Proceedings of the 12th annual SIGCSE conference on Innovation and technology in computer science education, New York, NY, USA, ACM, pp. 206 - 210, 2007.
- Dehnadi, S., Testing programming Aptitude. In Proc. of the 18th Workshop of the Psychology of Programming Interest Group, 22-37, Brighton, UK, 2006.
- Dehnadi, S., Bornat, R., The camel has two humps, 2006.
- Ford, M., Venema, S., Assessing the Success of an Introductory Programming Course,
 Journal of Information Technology Education, Vol. 9, pp. 133-145, 2010
- Wray, S., SQ minus EQ can predict programming aptitude, In Proceedings of the PPIG 19th Annual Workshop, Finland, 2007.
- Strnad, M., Nančovska Šerbec, I., Rugelj, J, Programming aptitude and learning success in the introductory course on programming, ICL2009, Villach/Austria, pp. 330-336, 2009.

Data Cleaning

- date of birth converted to years,
- 4 different answers of former knowledge agregated to YES/NO for prior programming experience,
- Geographical region normalized text

—

Cognitive test II

1. Read the following statements and tick the box next to the correct answer in the next column.

```
int a = 10;
int b = 20;
a = b;
```

The new values of a and b are: a = 30 b = 0

```
☐ a = 30 b = 20
☐ a = 20 b = 0
☐ a = 20 b = 10
☐ a = 10 b = 20
☐ a = 10 b = 20
☐ a = 20 b = 10
☐ a = 20 b = 10
☐ a = 0 b = 10
```

If none, give the correct values: a = b = Use this column for your rough notes please

sample question with one assignment

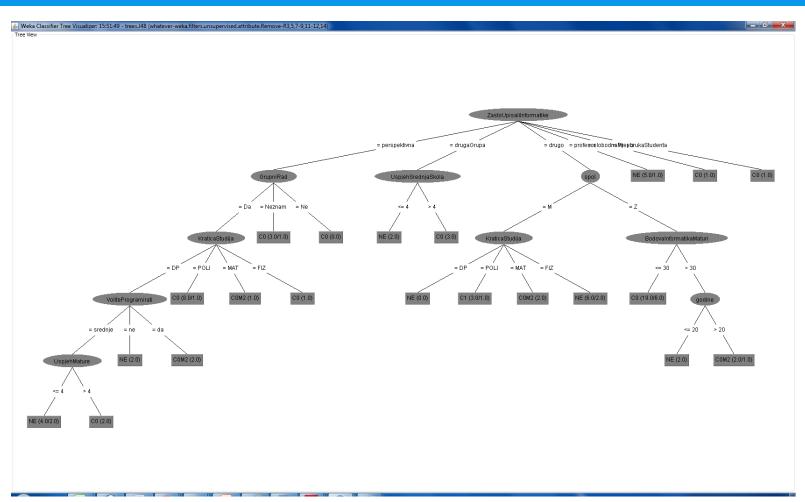
4. Read the following statements and tick the box next to the correct answer in the next column.

The new values of a and b are:

Any other values for a and b:

Use this column for your rough notes please

sample question with multiple assignments


Anticipated mental models

Mark sheet allowing for judgement of level of consistency

	Assignment							No Equal Swap effect sign values			Remarks (including participants' working notes)	
Questions	Assign	1-to-left	Assign-	to-right	Add-Ass		Add-Ass rig		Values don't	ues Assign n't means nge equal 9) (M10)	Swap values (M11) /S2 /S3	Swap values (M11)
Questions	Lose- value (M1) /S2 /S3	Keep- value (M2) /S2 /S3	Lose- value (M3) /S2 /S3	Keep- value (M4) /S2 /S3	Keep- value (M5) /S2 /S3	Lose- value (M6) /S2 /S3	Keep- value (M7) /S2 /S3	Lose- value (M8) /S2 /S3	change (M9) /S2			
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
12												
C0												
C1		·		·						·		
C2		·	•	·			·					
C3												

Classification tree

